Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Air Waste Manag Assoc ; 66(4): 341-55, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26671649

RESUMO

UNLABELLED: Yanbu, on the Red Sea, is an affluent Saudi Arabian industrial city of modest size. Substantial effort has been spent to balance environmental quality, especially air pollution, and industrial development. We have analyzed six years of observations of criteria pollutants O3, SO2, particles (PM2.5 and PM10) and the known ozone precursors-volatile organic compounds (VOCs) and nitrogen oxides (NOx). The results suggest frequent VOC-limited conditions in which ozone concentrations increase with decreasing NOx and with increasing VOCs when NOx is plentiful. For the remaining circumstances ozone has a complex non-linear relationship with the VOCs. The interactions between these factors at Yanbu cause measurable impacts on air pollution including the weekend effect in which ozone concentrations stay the same or even increase despite significantly lower emissions of the precursors on the weekends. Air pollution was lower during the Eids (al-Fitr and al-Adha), Ramadan and the Hajj periods. During Ramadan, there were substantial night time emissions as the cycle everyday living is almost reversed between night and day. The exceedances of air pollution standards were evaluated using criteria from the U.S. Environmental Protection Agency (EPA), World Health Organization (WHO), the Saudi Presidency of Meteorology and Environment (PME) and the Royal Commission Environmental Regulations (RCER). The latter are stricter standards set just for Yanbu and Jubail. For the fine particles (PM2.5), an analysis of the winds showed a major impact from desert dust. This effect had to be taken into account but still left many occasions when standards were exceeded. Fewer exceedances were found for SO2, and fewer still for ozone. The paper presents a comprehensive view of air quality at this isolated desert urban environment. IMPLICATIONS: Frequent VOC-limited conditions are found at Yanbu in Saudi Arabia that increase ozone pollution if NOx is are reduced. In this desert environment, increased nightlife produces the highest levels of VOCs and NOx at night rather than the day. The effects increase during Ramadan. Fine particles peak twice a day-the morning peak is caused by traffic and increases with decreasing wind, potentially representing health concerns, but the larger afternoon peak is caused by the wind, and it increases with increasing wind speeds. These features suggest that exposure to pollutants must be redefined for such an environment.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Poluentes Atmosféricos/normas , Cultura , Óxidos de Nitrogênio/análise , Óxidos de Nitrogênio/química , Ozônio/análise , Ozônio/química , Arábia Saudita , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/química , Tempo (Meteorologia)
2.
Chemosphere ; 55(8): 1109-19, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15050808

RESUMO

The concentrations of CF(3)-containing compounds in archived air samples collected at Cape Meares, Oregon, from 1978 to 1997, at Point Barrow, Alaska, from 1995 to 1998, and at Palmer Station, Antarctica, from 1991 to 1997, were determined by high resolution gas chromatography and high resolution mass spectrometry. The CF(3)-containing compounds measured by this method and discussed here are: the perfluorinated compound, C(3)F(8) (FC 218); four perhalogenated compounds, CF(3)Cl (CFC 13), CF(3)CF(2)Cl (CFC 115), CF(3)CFCl(2) (CFC 114a), and CF(3)Br (Halon 1301); and three hydrofluorocompounds, CF(3)H (HFC 23), CF(3)CH(3) (HFC 143a), and CF(3)CH(2)F (HFC 134a). For four of these compounds, very few measurements have been previously reported. The atmospheric concentrations of all of the CF(3)-containing compounds continuously increased in time over the sample collection periods. From these data, the annual rates of emission into the atmosphere have been estimated. The emission rates fall into one of three distinct categories. The annual emission rates of C(3)F(8), CF(3)H, CF(3)CH(3), and CF(3)CH(2)F have continuously increased over the last two decades. That of CF(3)CFCl(2) has decreased continuously. Emission rates for CF(3)Cl, CF(3)CF(2)Cl, and CF(3)Br reached maximum levels in the late 1980s, and have been decreasing in the 1990s. The emission rates of C(3)F(8), CF(3)CH(3) and CF(3)CH(2)F were nearly zero 20 years ago but have increased rapidly during the last decade.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Hidrocarbonetos Halogenados/análise , Modelos Químicos , Alaska , Regiões Antárticas , Cromatografia Gasosa-Espectrometria de Massas , Oregon
3.
Chemosphere ; 54(2): 143-66, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14559267

RESUMO

A chemistry model of the global troposphere is presented which focuses on the hydroxyl radical, OH. Global distributions of OH are calculated based on known chemical reaction pathways, experimentally measured values of precursor species O3, H2O, NOx (defined as NO+NO2), CO, CH4, and actinic flux (which includes the effects of cloud cover and O3 column absorption). Model grid resolution is 1 km in altitude by 10 degrees latitude, and zonally divided into land or ocean. Species are calculated as seasonal averages. Global annual mean OH in the troposphere (up to 14 km altitude) is calculated to be 9.2 x 10(5) molcm(-3) with averages of 9.8 x 10(5) in the northern hemisphere, and 8.5 x 10(5) in the southern hemisphere. Global CO and CH(4) oxidation rates by OH are calculated to be 1840 Tgyear(-1) and 580 Tgyear(-1), respectively. OH is found to be most sensitive to O3 and H2O concentrations, as well as to the photolysis rate of O3 to O1D. Sensitivity of CO and CH4 oxidation rates to cloud presence shows an inverse relationship to cloud amount and optical depth. Model results are shown to be consistent with results from two other published models.


Assuntos
Atmosfera/análise , Radical Hidroxila/química , Modelos Químicos , Monóxido de Carbono/química , Metano/química , Óxidos de Nitrogênio/química , Fotólise , Estações do Ano , Água/química
4.
Environ Sci Technol ; 37(13): 2869-77, 2003 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-12875388

RESUMO

Emission contributions from cookstoves to indoor, regional, and global air pollution largely depend on stove and fuel types. This paper presents a database on emission factors of speciated non-methane hydrocarbons (NMHCs) for 16 fuel/stove combinations burning 2 types of crop residue, wood, 4 types of coal, kerosene, and 3 types of gaseous fuels. The emission factors are presented both on a fuel mass basis (compound mass per fuel mass) and on a cooking task basis (compound mass per unit energy delivered to the pot). These fuel/stove combinations cover a large spectrum of the cookstoves used in both urban and rural households in China. Up to 54 hydrocarbons were identified, some of which are reactive precursors of photochemical smog. Based on published maximum incremental reactivity (MIR) values for NMHCs, we estimated stove-specific and fuel-specific ozone forming potentials (OFPs). The results indicate that raw coal powder, wood, and crop residues have higher OFP values than the other types of fuels tested. Strikingly, burning the coal briquette and honeycomb coal briquette produced OFP values more than 2 orders of magnitude lower than burning unprocessed (raw) coal, even in the same vented metal stove, for every 1 MJ delivered to the pot.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Culinária , Hidrocarbonetos/análise , China , Carvão Mineral , Monitoramento Ambiental , Oxidantes Fotoquímicos/química , Ozônio/química , Madeira
5.
Chemosphere ; 47(8): 807-21, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12079076

RESUMO

Data from weekly global measurements of nitrous oxide from 1981 to the end of 1996 are presented. The results show that there is more N2O in the northern hemisphere by about 0.7 +/- 0.04 ppbv, and the Arctic to Antarctic difference is about 1.2 +/- 0.1 ppbv. Concentrations at locations influenced by continental air are higher than at marine sites, showing the existence of large land-based emissions. For the period studied, N2O increased at an average rate of about 0.6 ppbv/year (approximately 0.2%/year) although there were periods when the rates were substantially different. Using ice core data, a record of N2O can be put together that goes back about 1000 years. It shows pre-industrial levels of about 287 +/- 1 ppbv and that concentrations have now risen by about 27 ppbv or 9.4% over the last century. The ice core data show that N2O started increasing only during the 20th century. The data presented here represent a comprehensive view of the present global distribution of N20 and its historical and recent trends.


Assuntos
Poluentes Atmosféricos/análise , Poluentes Atmosféricos/história , Óxido Nitroso/análise , Óxido Nitroso/história , Regiões Antárticas , Regiões Árticas , Monitoramento Ambiental , História do Século XV , História do Século XVI , História do Século XVII , História do Século XVIII , História do Século XIX , História do Século XX , História Medieval , Gelo , Estudos Retrospectivos
6.
Chemosphere ; 47(8): 823-36, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12079077

RESUMO

The presence of water vapor in a sample of air reduces the concentration of a trace gas measured from the sample. We present a methodology to correct for this effect for those cases when the concentration of the trace gas has already been measured from a wet sample. The conversion or correction factor that takes the wet mole fraction to a dry mole fraction is determined by the mixing ratio of water vapor inside the sampling canister. For those samples where the water vapor is saturated inside the canister, the water vapor mixing ratio is largely determined by laboratory conditions; for the unsaturated samples, the mixing ratio is determined by station conditions. If the meteorology at the sampling station is known, the equations presented here can be used directly to calculate the appropriate correction factor. For convenience, we use climatological data to derive average monthly correction factors for seven common global sampling sites: Barrow, AK, US (71 degrees N, 157degrees W); Cape Meares, OR, US (45 degrees N, 124 degrees W); Mauna Loa, HI, US (19 degrees N, 155 degrees W); Ragged Point, Barbados (13 degrees N, 59 degrees W); American Samoa (14 degrees S, 171 degrees W); Cape Grim, Tasmania, Australia (41 degrees S, 145 degrees E); South Pole (90 degrees S). These factors adjust wet mole fractions upwards within a range of 0.002% for the South Pole to over 0.8% for saturated sites. We apply the correction factors to wet nitrous oxide (N2O) mole fractions. The corrected data are more consistent with our understanding of N2O sources.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/normas , Água/análise , Gases , Óxido Nitroso/análise , Valores de Referência , Volatilização , Tempo (Meteorologia)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...